Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Free, publicly-accessible full text available November 1, 2026
-
Free, publicly-accessible full text available May 1, 2026
-
Free, publicly-accessible full text available January 22, 2026
-
Mahoney, Michael (Ed.)In this paper, we study the Radial Basis Function (RBF) approximation to differential operators on smooth tensor fields defined on closed Riemannian submanifolds of Euclidean space, identified by randomly sampled point cloud data. The formulation in this paper leverages a fundamental fact that the covariant derivative on a submanifold is the projection of the directional derivative in the ambient Euclidean space onto the tangent space of the submanifold. To differentiate a test function (or vector field) on the submanifold with respect to the Euclidean metric, the RBF interpolation is applied to extend the function (or vector field) in the ambient Euclidean space. When the manifolds are unknown, we develop an improved second-order local SVD technique for estimating local tangent spaces on the manifold. When the classical pointwise non-symmetric RBF formulation is used to solve Laplacian eigenvalue problems, we found that while accurate estimation of the leading spectra can be obtained with large enough data, such an approximation often produces irrelevant complex-valued spectra (or pollution) as the true spectra are real-valued and positive. To avoid such an issue, we introduce a symmetric RBF discrete approximation of the Laplacians induced by a weak formulation on appropriate Hilbert spaces. Unlike the non-symmetric approximation, this formulation guarantees non-negative real-valued spectra and the orthogonality of the eigenvectors. Theoretically, we establish the convergence of the eigenpairs of both the Laplace-Beltrami operator and Bochner Laplacian for the symmetric formulation in the limit of large data with convergence rates. Numerically, we provide supporting examples for approximations of the Laplace-Beltrami operator and various vector Laplacians, including the Bochner, Hodge, and Lichnerowicz Laplacians.more » « less
-
We propose a machine learning (ML) non-Markovian closure modelling framework for accurate predictions of statistical responses of turbulent dynamical systems subjected to external forcings. One of the difficulties in this statistical closure problem is the lack of training data, which is a configuration that is not desirable in supervised learning with neural network models. In this study with the 40-dimensional Lorenz-96 model, the shortage of data is due to the stationarity of the statistics beyond the decorrelation time. Thus, the only informative content in the training data is from the short-time transient statistics. We adopt a unified closure framework on various truncation regimes, including and excluding the detailed dynamical equations for the variances. The closure framework employs a Long-Short-Term-Memory architecture to represent the higher-order unresolved statistical feedbacks with a choice of ansatz that accounts for the intrinsic instability yet produces stable long-time predictions. We found that this unified agnostic ML approach performs well under various truncation scenarios. Numerically, it is shown that the ML closure model can accurately predict the long-time statistical responses subjected to various time-dependent external forces that have larger maximum forcing amplitudes and are not in the training dataset. This article is part of the theme issue ‘Data-driven prediction in dynamical systems’.more » « less
An official website of the United States government

Full Text Available